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ABSTRACT 

We performed a numerical simulation of the sloshing of a 

diffusion interface between two miscible liquids (pure and salt 

water) in order to address the first step in the understanding of 

the behavior of very expandable cryogenic liquids. The two 

phases of some tenth of cm high are contained in a cylindrical 

container of 1 m in diameter in a gravitational stable 

configuration. Two ways of exciting internal waves are 

considered, by moving periodically the tank along one fixed 

direction and by moving up and down an insert located inside the 

tank. The study proves that the dynamic behavior of the miscible 

interface is quite different than that of a gas-liquid interface: 

when exciting the waves by periodic lateral motion, sheering-

induced diffusion leads to a fast thickening of the interface and 

to a lowering of the first resonance mode of the tank which does 

not match at all with the experimental results; when exciting the 

internal wave by moving an insert, as in the experimental setup, 

the interface evolves by molecular diffusion only and the results 

are closer to the experimental one. Time series of the interface 

displacement are numerically obtained by solving the Navier-

Stokes equation using the Phoenics numerical code. The 

existence of a swirling wave mode is confirmed; the transition 

threshold between sloshing and swirling is detected and the 

present result show discrepancies with the experiments.  

 

INTRODUCTION 

 Understanding mechanisms of the sloshing of 

propellants in the tanks of space vehicles is an important issue 

both for the thermal control, pressure regulation and guidance. 

The problem has been studied experimentally in reduced scale 

experiments for equilibrium interfaces, e.g. between a gas and a 

liquid [1]. However, in the case of cryogenic, extremely 

expandable liquids, no real attempts have been made to address 

the dynamics of diffusion interfaces. These pseudo-interfaces 

correspond to the huge density gradient associated to heat 

diffusion interfaces in very expandable, low heat diffusing 

supercritical, or near-critical, van der Waals liquids. They can 

behave as real interfaces and give rise to Rayleigh-Taylor like 

instability [2]. The question of hyper compressible fluids 

modeling is extremely difficult since it needs the solution of van 

der Waals fluids equations which poses numerous numerical 

challenges [3]. Defining experiments on the dynamics of these 

interfaces is also extremely difficult because the fluid cells must 

be accurately thermostated and the setup confined in a Dewar. 

However experiments where recently performed on the 

dynamics of mass diffusion interfaces [4], which are of great 

interest for the above-mentioned goal.  They addressed the 

transition from slosh to swirl of a diffusion interface between 

pure and salt water when the internal waves are resonantly forced 

by the vertical oscillations of an insert in a cylindrical container. 

They measured the time series of the interface displacement in 

different locations and the phase diagram of different points 

allowed to characterize the transition in terms of frequency and 

oscillation amplitude. However going beyond the interface 

displacement measurement is difficult and particularly difficult 

is the visualization of the flow pattern and other characteristics. 

We performed a numerical simulation of the sloshing of a 

diffusion interface in two configurations using the Phoenics 

code: interface forcing by lateral oscillatory motion of the 

container and interface forcing by vertical motion of an insert. 

Time series of the interface displacement are numerically 

obtained and the transition threshold is detected. The flow 

patterns are visualized and the results compared with the 

experiments whenever possible.  

THE EXPERIMENTAL CONTEXT 
 

The configuration under consideration is that of ref. [4]. A 

cylindrical container is filled with salt water and pure water in 

gravitationally stable configuration. The height of the fluid 

layers is 19 cm and the diameter of the cylinder is 1 m. The pure 

water is introduced first and then is introduced the salt water. The 

interface was resonantly forced by repeatedly moving an insert 

up and down (Fig. 1) at a frequency f  and amplitude A.  
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Figure 1: The experimental configuration: A cylindrical 

container of 1 m in diameter is partially filled with a two layer 

fluid in a gravitational stable position: a lower layer of salt 

water (0.19 m) and an upper layer of pure water (0.19 m). The 

insert is moved up and down to induce interface motion. 

 

 

The shallow water dispersion relation for the primary mode 

in a circular domain is given by 011 ck , where 

Rk 84.11   where R  is the basin radius and 0c the linear 

phase speed [4, Lamb]. For a two-layer fluid, the phase speed 

can be approximated a Ehgc '2
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equivalent depth. For a typical experiment the periodic forcing 

is initiated at a prescribed frequency far from the frequency of 

the primary mode. The forcing frequency was then changed step 

by step, increasing or decreasing depending on the initial 

frequency value compared to the frequency of the primary mode, 

covering in each case the frequency range 15.175.0  f . 

For each value of the forcing frequency, the steady state was 

awaited to be reached after about 50 forcing periods when the 

free response is dissipated by interface and boundary friction.  

The interface displacement was collected by ultrasonic probes at 

different points along the sloshing radius of the interface and in 

the orthogonal (sloshing axes). In the absence of swirling, the 

interface motion on the latter is negligible whereas it takes a 

finite value when swirling appears. The experiments show a 

transition from slosh to swirl in the covered frequency range.  

THE NUMERICAL CODE 
 

We have modeled the above described systems using a 

cylindrical coordinate frame of reference and assuming a time 

dependent incompressible fluid.  Cyclic boundary conditions are 

considered at 0 – 2. We solved the equations of momentum, 

continuity and salt concentration, with the finite volume code 

Phoenics. The density variation in the body forces has been 

introduced through a Boussinesq approximation. The algorithm 

solution of the pressure field, which is essential for the 

determination of the velocity field, is obtained using the 

SIMPLEST algorithm based on the SIMPLER algorithm. The 

mesh size has been chosen in azimuthal direction (32 cells), in 

radial direction (20 cells) and in axial direction (60 cells). In 

azimuthal direction the grid is uniform and in the other direction 

it is finer at the salt interface. The grid is shown in Fig. 2 and is 

used to solve the insert motion-generated interface displacement; 

the lateral motion case grid is the same except that there is no 

insert and that the container is closed where the insert bottom is 

initially located. 

 

 
Figure 2: Mesh distribution in the Y-Z plane for the insert 

motion- induced interface motion. 

 

The movement of the insert has been modeled with the 

special features of the Phoenics code: MOFOR (Moving Frames 

of Reference). The insert is moved with a sinusoidal oscillation:  

 ta sin . In our cases, a = 0.015m and   varies from 0.24 

to 0.36 Hz. 

In the case of the lateral oscillation acceleration in the form of 

 ta  sin2
has been introduced as a body force term. The 

effect of such acceleration is directly dependent on the amplitude 

of the density gradient at the interface of salted and pure water 

whereas in the case of the insert the movement of the fluid 

depends only in the movement of the insert.  

 

THE NUMERICAL SIMULATION 
 

The values of the geometrical and mechanical parameters 

are those corresponding to run 6 in [4] 

- Height of the salt water layer: 0.19 m 

- Height of the pure water layer: 0.19 m 
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- mhE 095.0  

- resonance frequency Hz3128.01   

- Forcing frequency:  

Set (1) 78.0,92.0,96.0,07.11  f  (decreasing) 

Set (2) 96.0,92.0,88.0,80.01  f  (increasing) 

- insert motion amplitude A= 0.015 m 

The fluid is initially at rest and at thermodynamic equilibrium. 

At the initial time either by moving the whole tank or by moving 

the internal insert induces the motion of the interface. The 

collected data are the interface displacement time series at 

different measurement points (Fig.3) as well the interface 

displacement at probe 5 versus interface displacement at probe 1 

for different values of the forcing frequency. The pure water is 

represented by a concentration value of zero and the salted water 

by a concentration value of one, following such definition the 

interface location has been chosen to be at a concentration value 

of 0.5. These data correspond to those measured in [4]. The 

numerical procedure is as close as that used during experiments: 

the lateral oscillation is maintained during 50 periods and the 

frequency is changed again increasingly or decreasingly. Each 

time period corresponds to 20s.   The raw times series (non 

filtered) of the interface displacement containing the gravest 

mode as well as the higher harmonics are collected for the 

different decreasing frequencies and increasing frequency 

For the present cases,  we have not considered the free surface 

between the ambient air and the upper pure water layer which 

has raised convergence difficulties. This is why we considered 

the tank as a close volume entirely filled by the two fluid layers. 

In the continuation of this work, we are planning to account for 

such free surface in order to be more close to the experiments.  

 
 

Figure 3: Location and numbering of the interface 

displacement probes. 

 

 

Excitation of the primary mode by harmonic, linear motion 

of the tank  

 

When studying equilibrium interface between two phases  

(liquid and gas for example) the mode of excitation of the 

sloshing modes in the tank can be achieved by two means: either 

a periodic translation of the tank or a vertical motion of an 

internal insert. This is why we first chose to force the interface 

motion by introducing a volumetric dragging inertia force 

corresponding to a periodic motion of the container at a 

prescribed frequency along a horizontal line. The amplitude of 

the container displacement was adjusted to produce interface 

motion amplitudes of the same order as those observed in 

experiments, namely 2m, the important thing being to detect the 

transition between slosh to swirl. We observe that the interface 

thickening is much faster than it would be by pure mass diffusion 

only as shown in Fig. 4. This due to the shear induced diffusion 

of the density interface.  

 

 

 

 

 

 

 
 

Figure. 4: Density profile for the case with a moving piston 

(solid) and for the case of lateral acceleration (dashed) after 100 

periods: the thickening of the interface is due to shear –induced 

diffusion. 

 

As a matter of facts, the inertia force only plays initially in the 

interface region (strong density gradient) and creates a shearing 

velocity field parallel to the latter. (Fig. 5) (in the absence of 

interface, there would be no motion generated in the closed 

container). The thickening of the interface provokes a decrease 

of the natural frequency of the container so that the forced 

response being detuned from the resonance conditions, the 

interface motion amplitude decreases which may explain the 

absence of transition to swirl.  
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Figure. 5: Evidence of the shear flow induced in the vicinity of 

the interface by the oscillatory motion of the whole tank (

96.01  f , decreasing frequencies). 

The corresponding trajectories are given in Fig 7 

 
 

Figure 6: Trajectories of the fluid particles as the fluid moves 

under the tank lateral, harmonic motion 

 

The result is that the swirl motion is never observed as shown 

in Fig. 7 for phase diagram. 

 

 
 

 

Figure 7: Interface motion at point 5 versus interface location at 

point 1 for 1 f  0.96. 

 

Excitation of the primary mode by moving an insert 

 

Moving the tank to generate the interface motion is not 

appropriate since it provokes the interface shear-induced 

diffusion. We thus consider moving an insert inside the closed 

tank to avoid introducing a free surface. (Fig. 8) and to be 

however closer to the experimental configuration. The insert 

motion amplitude is set to 0.015 m as in [4].  For each value of 

the frequency of oscillations, 50 periods are computed in order 

to reach a steady state and to damp the free response of the 

container by boundary and bulk friction. Two sets of calculation 

are performed: one set of four calculations for decreasing 

frequencies: the first set for the decreasing frequencies such that: 

78.0,92.0,96.0,07.11  f  

and one set for the following increasing frequencies 

96.0,92.0,88.0,80.01  f  

The diffusion of the interface is closer to that produced by 

molecular diffusion only which means that the natural frequency 

does not vary much during the course of the experiment. The 

shear at the interface is much less (Fig. 8) since the origin of the 

motion is the surface forces located at the insert surface at not a 

body force located in the interface region as in the previous case. 
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Fig. 8: Velocity vector field in the vertical plane for insert-

induced motion: the shear of the interface is less than in the 

tank oscillations for f/1 = 1.07. 

The raw times series (non filtered) of the interface displacement 

have been collected and are given for the first frequency of the 

decreasing set of frequencies (Fig. 9 (a)). The plot of the 

interface displacement at point 5 as a function of the interface 

displacement at point 1 is given for the increasing set of 

frequencies in Fig 9 (b) to (e) and for the increasing set of 

frequencies in Fig. 10 (a) to (d). The simulations are performed 

for the same parameters as in the previous section. The 

thickening of the interface (Fig. 11) is much less which tends to 

prove its shearing origin since the shear is much lower in this 

configuration (Fig 11) shows the velocity vector in the vertical 

plane 0 . We note that the interface displacement for the 

same insert oscillation amplitude is smaller than in the 

experiments.  The may be due to the current geometry which 

does not involve any free air-water free surface.  

Fig.  9 (b)-(e) show that for decreasing frequencies the swirl 

appears for 96.01  f  and looks to increase slowly with 

the offset to the threshold (this seems to be contradiction with the 

liquid-gas interface experiments) while the frequency shift 

decrease (what is consistent with the mentioned experiments). 

This seems to be contradiction with the liquid-gas interface 

experiments [4].  On the other hand, the swirling motion seems 

to exist for 78.01  f  whereas experiments do not show 

it for this frequency.  Fig. 10 (a)-(d) show that the swirl exists for 

the same frequencies it exists for the decreasing frequency 

approach to the resonance. However the detailed motion depends 

on the way the resonance is approached. A questioning 

observation is the offset position of the interface compared to its 

equilibrium one which is not understood up to now.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 9: (a) Raw time series of the interface motion at point 5 

(color)) and 1 (black) for the case 07.11  f ; (b) to (e): 

interface displacement at point 5 as a function of that at point 1 

for the decreasing frequencies set.   
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(c) 

 
(d) 

 

 

Fig 10 (a)-(d) Interface displacement at point 5 as a function of 

that at point 1 for the increasing frequencies set.   

 

CONCLUSION 
 

The numerical simulation of near resonance large amplitude 

motion indicates that the planar resonant internal wave bifurcates 

to aw swirling wave for a near-resonance frequency range. These 

preliminary results are in partial agreement with experiments and 

need to be refined. The simulation conditions must be closer to 

the experimental one before an extensive exploration of the 

phenomena is performed, including the characterization of the 

bifurcation, the characterization of the wave breaking scenarios.  
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