PHOENICS - Your Gateway to Successiul

CHAM is working on a new application
for PHOENICS relating to Heat Islands in
response to the need for a way of
modelling the increase in temperatures
in urban areas caused by the absorption
and emission of radiation by buildings,
roads and other man-made objects
prevalent in cityscapes. This application
is particularly relevant as the size of
urban areas increases.

If you are interested in this particular use
of PHOENICS please contact

sales@cham.co.uk.

If you are a maintained PHOENICS User
and have not yet received PHOENICS

2011 please contact Michelle Lyle
(mjl@cham.co.uk) to arrange delivery.

CHAM would like to wish
PHOENICS Users — present,
past and potential — a Happy
Easter.
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2) PHOENICS News

2.1 Agent News
2.1.1 Shanghai Feiyi

Shanghai Feiyi promoted PHOENICS at the Hunan
Province Architecture Exhibition in December which
concentrates on matters of building energy
conservation. Some 500 persons took part in the
Conference all of whom received PHOENICS information;
some 250 visited the PHOENICS stand.

5 =) i
Engineers’ introduction PHOENICS software

In February the Zhejiang Province Department of
Construction organised a meeting based on PHOENICS
Applications for Heat Islands (see 3.1 below). All key
companies in Zhejian Province interested in building
energy conservation took part in the training and demos
to strengthen the province’s civil building management
and reduce energy consumption in such buildings.

In March (1-8) the Zhejiang Province Department of
Construction organized a first stage training course to
evaluate rules to be introduced to govern energy
consumption in civil buildings. Shanghai Feiyi was
invited to conduct the heat island and ventilation
elements of the course. Over 300 engineers took part;
second stage training was held March 19 and third and
fourth stage training will follow.

2.2 PHOENICS Activities

Dates | Activity

April PHOENICS Basic Training at CHAMPION.
16-17 Contact sales@c-h-a-m-p-i-o-n.com.tw

April PHOENICS Training Course at ACFDA in
17-19 Toronto. Customized one-to-one courses can
be arranged in Toronto, at client sites or over

the internet. Contact acfda@sympatico.ca.

April PHOENICS at ICCI 2010, Istanbul Expo Centre.
24 -26 Contact INORES, serkin.us@inores.com

May 3 PHOENICS Presentation at Universite de
Clermond-Ferrand. Contact ARCOFLUID:
arcofluid@arcofluid.fr

May PHOENICS at ARBS (Air Conditioning,
7-9 Refrigeration & Building Services Exhibition)
presented by ACADS-BSG, Melbourne, Contact
ACADS: acadsbsg@ozemail.com.au

May Advanced Training (HVAC).
14-15 Contact sales@c-h-a-m-p-i-o-n.com.tw

May 17 Seminar at Institut Polytechnique de
Marseilles. Contact arcofluid@arcofluid.fr

May Training Course at CHAM Head Office
29-31 information from sales@cham.co.uk.

June Basic Training at CHAMPION. Contact
18-19 sales@c-h-a-m-p-i-o-n.com.tw

July Advances in Heat Transfer 5th Int Symposium,

1-6 Bath, UK. Keynote Lecture: Brian Spalding

July Advanced Training (Flow Around Buildings).
16-17 Contact sales@c-h-a-m-p-i-o-n.com.tw

July Heat Transfer, Fluid  Mechanics &

16-18 Thermodynamics, 9th Int Conference, Malta,
Keynote Lecture: Professor Spalding

August PHOENICS Demonstration & Presentation at
3-5 the CFD Conference of the R.O.C.

Contact sales@c-h-a-m-p-i-o-n.com.tw

August Basic Training at CHAMPION. Contact
13-14 sales@c-h-a-m-p-i-o-n.com.tw

September | PHOENICS @ Semi-Conductor & Processing
9 Equipment Conference R.O.C. Contact sales@c-
h-a-m-p-i-o-n.com.tw

September | Advanced Training (Fire, Smoke and Safety in
17-18 Buildings) at CHAMPION
Contact sales@c-h-a-m-p-i-o-n.com.tw

October Basic Training at CHAMPION. Contact
15-17 sales@c-h-a-m-p-i-o-n.com.tw

November | Advanced Training (CFD in Semi Conductors &
12-13 Opteoelectronic Processing Equipment)
Contact sales@c-h-a-m-p-i-o-n.com.tw

November | Demonstration & Presentation at the National
16-17 Conference of Theoretical and Applied

Mechanics, R.O.C.

Contact sales@c-h-a-m-p-i-o-n.com.tw
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3) PHOENICS Applications

3.1 Heat Island Application by Brian Spalding

URBAN HEAT ISLAND

Little vegetation or evaporation causes cities
to remain warmer than the surrounding countryside

Température superficielle apparente le 10 juillet 1984 dans la RMR de Montréal
Cl ion de é selon la moyenne (23,65°C)

Introduction

Heat islands are large-scale phenomena in which
the general urban temperature level rises above that of
the rural surroundings. The main cause of the heat-
island effect is the absorption by, and emission of,
radiation by hard-surfaced man-made objects (buildings
and roads). The sun falls on vegetation and on cities at
the same rate; but the vegetation absorbs the incoming
radiation in depth, is better cooled by the air in which it
is immersed and can lose heat by evaporation. Hard
surfaces by contrast quickly attain the temperatures
which enable them to emit nearly as much radiant heat
as they gain (the difference being lost by convection).

—
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Unlike the large-scale Air Ventilation Assessment
(AVA), heat island simulation does not require that the
detailed geometry of buildings is captured; rather it is
the amount of solid surface per unit volume, and its
emissivity, which is decisive. The ‘sunlight’ object in

PHOENICS can compute the intensity and direction of
incoming radiation and its distribution upon surfaces,
and the Immersol feature is ideally suited to handling
the redistribution of radiation between buildings by
reflection and re-radiation.

To date, little simulation of heat island phenomena
has taken place. However, investigation into heat
islands, their causes and effects, is becoming
increasingly important across the globe, especially, as
one might expect, in highly urbanised environments.
The new PHOENICS-based prototype heat-island model
has been developed in response to that demand and
forms a flexible template for investigative engineers.

§ PHOENICS for Heat Islands
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There is a new menu-driven interface designed for
potential users who do not have time to learn to use the
standard VR-Editor or VR-Viewer but want to enjoy the
benefits of CFD. It is the creator of the Q1 and the
associated soc.xml who decides which parameters will
be made easy for these users to set and which default
views it will be made easy for them to display.

This optional menu transmits the Q1 and
frommenu.htm to the working directory, runs the case
there and leaves its files there. At that point, users have
the option to start to run PHOENICS via VR in the usual
way, ie without further use of the menu.

Geometry — comprising buildings, roads, hard ground,
= grass and water way =

The idealised geometry shown above contains
many of the components of interest to the “Heatisle”
engineer; viz, concrete and glass high rise buildings,
tarmac roadways, hard terrain and vegetation, and a
water course. Each component responds differently to
solar radiation.




Wing direction

LA

Sun position

Noon

In our test case, the wind and sun conditions are
representative of the UK (Gatwick) in April.

e Wind direction — East

e Wind speed - 2.5 m/s at 10m
e Logarithmic wind profile

* Roughness height - 0.1m

* Ambient temperature - 12°C
¢ Ground temperature - 9°C

¢ Sun latitude 51deg

e Direct radiation 400 W/m?2

e Diffuse radiation 100 W/m2

ur
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625000
0.562500
580000
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250000
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000000

Shading

In this example, the ground surrounding the
buildings, road, grass and river all have a Z depth of 2m.
The ground temperature of 9°C is applied at the lower
face of the ground. This represents the constant earth
temperature underground.

The radiative heat transfer is handled by IMMERSOL.
The surface emissivities are set as follows:

Ground - 09
Grass - 1.0
Road - 05
River - 10
Building - 1.0

The radiative heat loss to the sky is represented by
a radiative heat loss to an external temperature of -2°C
with an emissivity of 1.0.

It should be noted that in order to radiate 500w/m2
to an external temperature of -2°C, the required
temperature is 72°C. After around 1200 sweeps the
average temperature over the entire ground plane just
below the surface is 67°C. The temperature of the road
which has a lower emissivity is higher, again in line with
expectation. However, given that the surface
temperatures are not actually that high in reality, there
must be some other mechanism for heat loss.

Although in this case the model is set with user-
defined inputs, both the sun and wind parameters can
be imported from an EPW weather file (eg the public
domain Energy Plus database.)

Conclusion

The prototype heat island module demonstrates
adequately the ability of PHOENICS to simulate
processes of this type. Whilst there is already
connectivity with weather mapping data bases, the
module still remains as a working template, relying upon
the user to specify appropriate materials, and their
emissivity and absorptivity values.




3.2 CHAM Case Study — Numerical Simulation

of an Air-to-Air Cross-flow Heat Exchanger
by Peter Spalding, CHAM Limited

A CFD model of a cross-flow heat exchanger was
created following receipt of a specification from the
Roads and Maritime Service (RMS) of New South Wales.
RMS personnel were carrying out a numerical simulation
study to predict air flow and temperature distribution in
the air-to-air type heat exchangerinstalled in their
Variable Message Sign (VMS) system.

Fans

RMS HeatX

Figure 1: Cross-Flow Heat Exchanger

The electronics inside the VMS generate heat,
under normal operating conditions, due to energy
losses. In summer time, the temperature inside the VMS
can be as high as 75°C. The internal re-circulating air
and the external cooling air are circulated by fan at a
flow rate of 600m>/h. The ambient temperature is 25°C
and the temperature of internal inlet air is 75°C. A 2%
inlet turbulence intensity was specified. The size of the
heat exchanger element is 0.2m X 0.2m X 0.2m and it is
epoxy coated aluminium. The rest of the enclosure is
aluminium alloy grade 5005 H34 with 2.0mm thickness.

Arrayed Thin
Heatz Plate objects

Figure 2: Cross-Flow Heat Exchanger

RMS engineers were primarily interested in using the
CFD model to calculate and predict the thermal
performance and effectiveness of the VMS heat
exchanger under different boundary conditions (such as
different internal or external inlet temperature, different
air flow rate for exhaust fan etc) and how would they
affect the results.
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Figure 3: Velocity

The above plot shows velocity of the hot air (near
right to far left) and the cooling air (near left to far
right). The next plot shows the temperatures of the two
air streams, and shows the heat-exchange mechanism
clearly.
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Figure 4: Temperature

Two methods of modelling the heat exchanger
were considered. The first, more simplistic, option was
to import the geometry from CAD and then apply a
sufficiently fine mesh to capture the 80 x 2mm cross-
sectional slots in the heat exchanger. However, a
second, more pragmatic, method was adopted involving
the replacement of this section with an array of "thin
plate" objects using the same dimensions. The
advantage of doing so is to remove the possibility of
incorrectly defined geometry and to ensure that the
heat transfer is based on the correct plate thickness,
whilst using a much smaller computational mesh.




Velocity, m/s

Figure 5: Velocity Vectors and Contours
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Figure 6: Velocity Vectors and Temperature Contours

The above two plots show velocity and
temperature respectively, in a hot-air channel (above)
and a cooling-air channel below. The cooling of the hot
air and the warming of the cold air within the heat
exchanger are clearly shown.

Details of the model set-up

A 3D Cartesian mesh was employed with 40 x 168 x 40
cells. PARSOL was not activated, as it is not required for
the rectangular geometry of the heat exchanger. The
LVEL turbulence model was used because of its
suitability for flows through narrow channels, with a
sparse grid resolution across the channels. The runs
were reasonably converged after 1000 sweeps; this
required a 75 minute run time on a single-processor
3GHz system.
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Figure 7: Streamlines x
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Figure 8: Streamlines -Z

Conclusions

The model provides a good representation of the
heat transfer processes in the heat exchanger. Close
examination of the model predictions reveal non-
uniformities within the heat exchanger. Air from the
inlet plena impinges straight onto the central channels,
while the outer channels receive air via a more
circuitous trajectory. This means that the air velocities
in the central channels are somewhat higher, giving
better heat transfer. This can be observed directly in the
temperature plots. If it were possible to spread the air
more uniformly, the overall heat transfer efficiency
might be improved. The CFD model can therefore
function as a design testbed, which engineers can use to
improve the performance of the unit.

Supplementary Images — Temperature and Velocity @
Y & Z planes
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4) User Applications
4.1 F1 in Schools: Update by Fred stillwell

http://www.flinschools.com

“We enter 2012 with high hopes for F1 in Schools
in the United States. Team Unitus defended their 2010
World Championship at the 2011 championships in
Malaysia and finished 3rd overall. Two other US teams,
both middle school age, also competed in Malaysia in
September.

Shown above is a picture of the 8th grade girls from
East Cobb Middle School. They placed 2nd at the 2011
US Nationals and then formed a collaborative team with
Germany and participated at the 2011 World Finals in
Malaysia. The girls have moved on to different high
schools but are actively working towards this year's US
Championships.

They also secured sponsorship from Porsche North
America. The big news is that we have an excellent
series sponsor, the Society of Automotive Engineers
(SAE.) This will allow us to expand our base and also to
make connections with the college level Formula SAE
teams.

I am now writing engineering curricula for grades 6-
12 at the Georgia Institute of Technology. While | am no
longer directly in the classroom, | am still mentoring F1
teams. | also hope to incorporate CFD into some of the
upper level curricula that | am developing. | look
forward to continuing to introduce students to the
concepts of CFD through the use of PHOENICS F1-VWT.”

Fred C Stillwell, Program Director - Robotics

Center for Education Integrating Science, Mathematics, and Computing
(CEISMC)

Georgia Institute of Technology, Atlanta, GA 30332-0282
http://www.ceismc.gatech.edu/
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4.2 The Search for a Solar Record in Lunar Paleoregolith through Numerical Modelling and Analog
Experiments by M E Rumpf’, S A Fagents®, C W Hamilton® & | A Crawford?

1 Hawaii Institute of Geophysics & Planetology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
2 Centre for Planetary Studies at UCL Birkbeck, London, UK

rumpf@hlgp.hawall.edu
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CHAM invites all reading this Newsletter to make a contribution by sending articles regarding their

use of PHOENICS to Colleen King (cik@cham.co.uk).

We would also remind all academic users that the Special Terms and Conditions under which they

obtain PHOENICS carry a responsibility to provide CHAM with:

1) An annual report regarding the CUSTOMER's use of PHOENICS under special discount terms on the anniversary of the licence
either at the end of an annual licence period or at the time when annual maintenance is renewed.
2) Q1 and GROUND files used in PHOENICS related teaching and/or research shall be provided periodically as they are generated

and no less frequently than once per year with the annual report.

3) Copies of all publications based on PHOENICS as generated and no less frequently than once per year with the annual report.

We look forward to hearing from you.
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