

CHAM Case Study – Building HVAC

PHOENICS 2006 applied to Steady-state Simulations of the Internal Flow within a Multi-storey Building

Introduction

- CHAM's Consultancy Team used PHOENICS/FLAIR for the analysis of a multi-storey building in the Kista region of Stockholm, Sweden.
- A model was created for testing the internal temperature distribution when subjected to worst-case winter and summer conditions (i.e. very cold or very hot).

Introduction

Seminar

There was concern about:

- the production of cold downdrafts in the atrium or along the large glassed façades during the winter
- whether there were regions of unacceptably high air temperature during the summer time.

Introduction

- The building design was supplied in the form of a number of AutoCAD.DWG (Drawing) files of the building and its location, along with the operational boundary data, such as:
 - the glass specification,
 - the building material,
 - internal heat sources, together with an estimate of the number of people, and supplementary heating and cooling baffles.

Geometry Creation

- Eight offices are located on four floors on either side of the atrium.
- AC3D was used to create 'bespoke' objects for the office floor

Geometry Creation

- Included within the model are some 650 objects representing doors, walls, roof, ceilings, glass windows, computers, persons, office furniture and various types of heat-sources.
- The distribution of these objects in all offices on each floor is similar.

Geometry Creation

Seminar

 Once one floor had been created, the 'Array Copy' feature was used to quickly generate the remaining floors.

Problem Specification

- To represent summertime conditions, a total solar heat gain of 46,580 Watts is specified through the glass doors and windows, with the radiation projected onto the floors and internal walls.
- This is in addition to the normal heat generated by people in the conference room and offices, and by lights and machines inside the building.

Problem Specification

Seminar

 The temperature within the building is regulated by an air conditioning system introducing cooled air at 15°C, and a ventilation system generating a total air exchange of 2300 l/s throughout the building.

Problem Specification

- The winter case differs in that there is no solar heat affecting the temperature in the building.
- Due to the low temperature outside, the glass door and all the glass windows take heat away from the building.
- The temperature of the ventilation air in the building is increased from 15°C to 18°C.

Seminar

A total mesh size of 1.1M cells (108 * 123 * 85) was used, non-uniformly distributed over the entire calculation domain.

Office Building in Kista Stockholm

Seminar

 A converged solution was obtained after 2000 iterations, which took 22 hours to complete on a 3MHz PC, and 8.5 hours on an equivalent 4-processor cluster using the parallel version of PHOENICS.

Seminar

Summer temperatures – X plane

Office Building in Kista Stockholm

Seminar

Winter temperatures – X plane

Office Bldg in Kista Stockholm (Winter)

Seminar

Summer temperatures – Y plane

Office Building in Kista Stockholm

Seminar

Winter temperatures – Y plane

Office Bldg in Kista Stockholm (Winter)

Seminar

Velocities in one of the rooms

Seminar

Velocities in one of the rooms

Seminar

Temperatures in one of the rooms

Seminar

Temperatures in one of the rooms

Conclusion

Seminar

 These, and more-detailed, results were supplied to support evidence from CHAM's customer to demonstrate the effectiveness of the building's HVAC design under atypical weather scenarios.

Seminar

END